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Shot noise and Coulomb blockade of Andreev reflection
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We derive low-energy effective action for a short coherent conductor between normal (N) and supercon-

ducting (S) reservoirs. We evaluate interaction correction G to Andreev conductance and demonstrate a close
relation between Coulomb effects and shot noise in NS systems. In the diffusive limit doubling of both
shot-noise power and charge in the carriers yields |6G| four times larger than in the normal case. Our predic-

tions can be directly tested in future experiments.
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INTRODUCTION

It is well known that low-energy electron transport across
the interface between normal metals and superconductors
(NS) is provided by the mechanism of Andreev reflection.!
This mechanism involves conversion of a subgap quasiparti-
cle entering the superconductor from the normal metal into a
Cooper pair together with simultaneous creation of a hole
that goes back into the normal metal. Each such act of
electron-hole reflection corresponds to transferring twice the
electron charge e*=2e¢ across the NS interface and results,
e.g., in nonzero conductance of the system at subgap
energies.”

Let us assume that two bulk metallic electrodes, one nor-
mal and one superconducting, are connected by an
arbitrary—though sufficiently short—coherent conductor as
it is schematically shown in Fig. 1. This conductor is char-
acterized by the normal-state conductance

82
Gy= 322 T, (1)

where 7, define transmissions of all conducting channels and
the factor 2 accounts for spin degeneracy. Evaluating the
conductance G, of the NS structure in Fig. 1, at
temperatures/voltages well below the superconducting gap A
one finds?

(2e)?
h

Gy=—2T,, (2)

where “Andreev transmissions” 7,, are related to 7, as
T,=T(2-T,)> 3)

Comparing Egs. (2) and (3) with the Landauer formula (1)
one immediately observes that Andreev conductance G4 for-
mally describes “normal” transport of spinless quasiparticles
(hence, no extra factor 2 in front of the sum) with charge
e*=2e across some effective coherent scatterer with channel
transmissions 7,, Eq. (3).

Later it was realized that this formal analogy applies not
only to electron transport but also to low-frequency shot
noise’> and eventually to full counting statistics (FCS).%
Consider, for instance, current fluctuations &I(¢)=1I(t)—1

around its average value [ =(I(#)). Tn normal conductors at
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T—0 and in the zero frequency limit the correlator for such
fluctuations has the well known form’

> T,(1-T,)

n

T,

<|5I|2>=6|V|GN:8N’ By= (4)

where V is the average voltage across the conductor. In NS
systems Andreev reflection also leads to the current shot
noise at energies below the superconducting gap. In this case
in the zero-energy/frequency limit and at 7— 0 one obtains*

X T,(1-1T,)
(617 =2e|VIGuBs, Ba=———=——> (5

27,

n

where 7, is again defined by Eq. (3). Again, a close similar-
ity between Eqgs. (4) and (5) is obvious: The result, Eq. (5),
just describes shot noise produced by carriers with effective
charge e"=2¢ in a coherent scatterer with conductance G,
and Fano factor S,.

In the important case of diffusive NS structures doubling
of the carrier charge also implies doubling of the shot noise.*
In this case the sums over transmission channels in the above
equations can be evaluated in a straightforward manner with
the results

Gy=Gyx By=Ps=1/3, (6)
which yield (| 8I|?)=2e|V|Gy/3 for NS structures and the two
times smaller result in the normal case. This doubling of the
shot noise in diffusive NS systems was indeed observed in
experiments.®?
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FIG. 1. Short coherent conductor connecting normal and super-
conducting reservoirs.
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More recently another interesting observation was
reported.'” The authors of this experiment investigated short
metallic nanowires attached to bulk superconducting elec-
trodes. In a number of samples superconductivity inside the
wire was destroyed due to phase slippage and, hence, such
samples  effectively  represented  hybrid  normal-
superconducting structures, e.g., similar to those depicted in
Fig. 1. Remarkably, the authors!® discovered that as long as
the electrodes stayed superconducting the measured I-V
curves could be well fitted by the theory of Coulomb block-
ade in normal coherent conductors!' provided the electron
charge e was substituted by some effective charge g, larger
than e but smaller than 2e. If, however, superconductivity in
bulk electrodes was suppressed, the I-V curves of exactly the
same form but with g.;=e were observed. Although these
observations strongly indicate that Andreev reflection can be
involved, no theoretical explanation of the experiments'® was
offered until now.

Below we develop a theory describing an interplay be-
tween Coulomb blockade and Andreev reflection. We will
explicitly evaluate the interaction correction to Andreev con-
ductance and demonstrate its direct correspondence to the
shot noise in NS structures. Hence, very different experi-
ments in Refs. 8—10 turn out to be closely related. Both
measure the same effective charge, i.e., e" =g

EFFECTIVE ACTION

As it is shown in Fig. 1, we will consider big normal and
superconducting reservoirs connected by a rather short nor-
mal bridge (conductor) with arbitrary transmission distribu-
tion 7T, of its conducting modes (for each n the value T, is
the same for spin-up and spin-down electrons). Both phase
and energy relaxation of electrons may occur only in the
reservoirs and not inside the conductor which length is as-
sumed to be shorter than dephasing and inelastic relaxation
lengths. In contrast to'? (where the Thouless energy e, of
the normal conductor plays an important role), here ey, of
the bridge is irrelevant as it is supposed to be higher than any
other energy scale in our problem. As usually, Coulomb in-
teraction between electrons in the conductor area is ac-
counted for by some effective capacitance C.

In order to analyze electron transport in the presence of
interactions we will make use of the effective action formal-
ism combined with the scattering matrix technique. This ap-
proach, very successful in the case of normal
conductors,'13-15 can be conveniently generalized to the su-
perconducting case. In fact, the structure of the effective ac-
tion remains the same also in the latter case, one should only
replace normal propagators by 2 X2 matrix Green’s func-
tions which account for superconductivity, as it was done,
e.g., in Refs. 16—18.

Following the usual procedure we express the kernel J of
the evolution operator on the Keldysh contour in terms of a
path integral over the fermionic fields which can be inte-
grated out after the standard Hubbard-Stratonovich decou-
pling of the interacting term. Then the kernel J takes the
form
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J= f D¢ D, exp(iS[¢]), (7)

where ¢, , are fluctuating phases defined on the forward and
backward parts of the Keldysh contour and related to fluctu-
ating voltages V;, across the conductor as ¢;,(f)=eV,.
Here and below we set fi=1.

The effective action consists of two terms, S[¢]=S[¢]
+S[ @], where

. C( a2 a_C[ .
iS[Vl=—= | dt'(¢1-¢3) = = | dtée™¢ (8)
2e7 ) e Jo
describes charging effects and the term S,[V] accounts for
electron transfer between normal and superconducting reser-
voirs. It reads'®

Slel=- 52 Tr ln{l + %({éN,és} - 2)}, (9)

where éN and és are 4 X4 Green-Keldysh matrices of nor-
mal and superconducting electrodes which product implies
time convolution and which anticommutator is denoted by
curly brackets. In Eq. (8) we also introduced “classical” and
“quantum” parts of the phase, respectively, ¢,=(¢,+@,)/2
and ¢_=¢;—¢,.

Without loss of generality we can set the electric potential
(and, hence, fluctuating phases) of the superconducting ter-
minal equal to zero. Then the Green-Keldysh matrix of this

Gr Gy .
. ) with
0 G, )

Gra(t) = = 8(0)7 — 0(=D)[A%J, (A1) + iAJy(AD)]

electrode can be written in a simple form és=(

and Gx=GrF-FG,, where F(t)=—iT/sinh[#Tt] is the Fou-
rier transform of 1—2n(e) and n(€)=1/(1+¢7) is the Fermi
function. Here J | are the Bessel functions, 7; are the Pauli

matrices, 6(t) is the Heaviside step function, and A=iA%,,
where A is chosen real.
The Green-Keldysh matrix of the normal terminal is de-

fined as
. 11 1)\, , 11
Gyit,t)==| . . |oMe) . ), (10)
2\1 -1 i -1

o1 ()
S e C
’ 2ar 0 el(pz(z‘)'r3

X<[1-zn(e)]+3 2n(e)%s )
2[1-n(e)]7s [2n(e) - 1]

e—i<pl(t’)7‘-3 0
X . (11)

where

0 e—icpz(r’)i-3

Substituting the above expressions for és and éN into Eq.
(9) we arrive at the action which fully describes transfer of
electrons between N terminal and S terminal to all orders in
T

ne
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In the limit of small channel transmissions one can ex-
pand S, in powers of 7,. Keeping the terms up to ~Ti one
recovers the contribution from Andreev reflection. At low
energies this part of the action reduces to the same form!'” as
that for normal tunnel barriers'® in which one substitutes e by
2e and Gy by G4. Here, however, we are aiming at a more
general description which includes arbitrary transmission
values T,. For this reason we will proceed differently.

Let us define the matrix XJ[g,]=1-T,/2
+(Tn/4){(v?N,Gvs}|¢_=0. As the action S, vanishes for ¢_(z)

=0 one has Tr In )?OzO. Making use of this property we can
identically transform the action, Eq. (9), to
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tribution to the action dominates. Hence, it suffices to con-
0
sider the limit of low energies e<<A and set GS—>(S2 5)-

Then we obtain

Y l r

(5(tt)1 - TT sin[ @, (1) — ¢, (t") JF(t,1")i7,

St
S, =— éE TrIn[1 + X3!0 X'], (12) (13)
where X' =1+(T,/4)({Gy,Gs}—2)—X,. At temperatures and
voltages well below the superconducting gap Andreev con- and
J
—sin @_(1)i7
(tt)——5(tt)< e-(1) 2)+T,1F(t,t')
sin ¢_(1)i7, 0
_(t (¢ (1
_cos¢2() o-l )cos[qo+(t) . (1")]i% {cos(’o ()cos(’p; ) — 1 |sin[ @, (2) — @, (¢')]i%,
, (14)
_(7 _(t _ _(t
sin® ( )sin(P ( )sin[go+(t) - ,(t)]im sin =2 cos? ( )cos[<p+(t) - ,(t")]it

2

Now let us assume that either dimensionless Andreev con-
ductance g,=4%,7, is large, g4, 1, or temperature is suffi-
ciently high (though still smaller than A). In either case one
can describe quantum dynamics of the phase variable ¢
within the quasiclassical approximation'"!> which amounts
to expanding S, in powers of (small) “quantum” part of the
phase ¢_(7). Employing Egs. (12)-(14) and expanding S, up
to terms ~ ¢~ we arrive at the Andreev effective action

iS,=iSx - S, (15)
where
g !
iSp== 22| dr' (1) gH(t'), (16)
2m),
t t 2
8A r _ _
—=\dt'| d' ———F—=¢ (¢ I
4[0 JO i1 3¢ e )
X A{B4 cos[2¢*(t") = 2¢*(t") ]+ 1 = B4} (17)

Equations (15)—(17) represent the central result of our
work. It is remarkable that the action S, is expressed in ex-
actly the same form as that for normal conductors!’!3 de-
rived within the same quasiclassical approximation for the

phase variable ¢(¢). In order to observe the correspondence
between the action'""!3 and that defined in Egs. (15)—(17) one
only needs to interchange

Gy Gy, By Ba (18)

and to account for an extra factor 2 in front of the phase ¢,
under cos in Eq. (17). This extra factor implies doubling of
the charge during Andreev reflection.

SHOT NOISE AND INTERACTION CORRECTION

Further analysis is formally similar to that of Ref. 11.
Hence, we can immediately proceed to our final results. Let
us define the average current and the current-current cor-
relator as

(i(t)):ief D(pié (t)eis["’], (19)
@_

l N _ L P

yIh.==e f P s wae)’ 20

where (ﬁ)+=<i(t)i(t’)+f(t’)f(t)>. In the absence of interac-
tions we set ¢, =eV and trivially recover the standard result
I=G,V. For the current fluctuations &I(r) from Egs.
(15)—(20) analogously to Ref. 11 we obtain
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FIG. 2. The interaction correction 6G=dI/dV -Gy for short dif-
fusive conductors at T=Gy/27C. The upper and lower curves cor-
respond to normal and NS structures, respectively.

(o)
Gy

+ 26V
—(1-Bw cothz—“’T + %E (& + 2eV)coth——".

1)

This equation fully describes current noise in NS structures
at energies well below the superconducting gap. For eV
>T,w Eq. (21) reduces to the result,* Eq. (5), while in the
diffusive regime the correlator, Eq. (21)—together with Eq.
(6)—matches with the semiclassical result.!®

Let us now turn on interactions. In this case one should
add the charging term, Eq. (8), to the action and account for
phase fluctuations. Proceeding along the same lines as in
Ref. 11, for g,>1 or max(7T,eV)> Eq=¢*/2C we get

I1=G,V-2epB,T Im{wW(l + %) - iv\If<1 + %)} ,
(22)

where W(x) is the digamma function, w=g,E/ m*T+iv and
v=2eV/aT. This result is plotted in Fig. 2.

The last term in Eq. (22) is the interaction correction to
the I-V curve which scales with Andreev Fano factor 8, in
exactly the same way as the shot noise, Eq. (5). Thus, we
arrive at an important conclusion: interaction correction to
Andreev conductance of NS structures is proportional to the
shot-noise power in such structures. This fundamental rela-
tion between interaction effects and shot noise goes along
with that established earlier for normal conductors'’?’ ex-
tending it to superconducting systems. In both cases this re-
lation is due to discrete nature of the charge carriers passing
through the conductor.

Another important observation is that the interaction cor-
rection to Andreev conductance defined in Eq. (22) has ex-
actly the same functional form as that for normal conductors,
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cf. Eq. (25) in Ref. 11. Furthermore, in a special case of
diffusive systems due to Eq. (6) the only difference between
the interaction corrections to the /-V curve in normal and NS
systems is the charge doubling in the latter case. As a result,
the Coulomb dip on the /-V curve of a diffusive NS system at
any given T is exactly two times narrower than that in the
normal case. We believe that this narrowing effect was de-
tected in normal wires attached to superconducting
electrodes, ! cf. Fig. 3c in that paper.”!

It should also be pointed out that the experiment!® was
carried out with SNS structures rather than NS systems con-
sidered here. Therefore the relation between our results and
those!® requires extra analysis. Making use of the sample
parameters'” we estimate an effective Thouless energy of the
N wire to be ~0.08 K which is much smaller than tempera-
ture 7=0.3 K employed in this experiment. Hence, for the
sake of our comparison SNS systems'® can be viewed as two
connected in series NS junctions. For this reason our results
remain applicable to the systems'? as well. We also point out
that with the aid of our theoretical expressions and experi-
mental parameters'® we can estimate the effective capaci-
tance as C~1.7 fF which agrees well with the estimate!®
~1 fF. Also the magnitude of the interaction correction
measured in Ref. 10 is consistent with our predictions.??

The above discussion demonstrates that seemingly differ-
ent experiments in Refs. 8—10 are actually closely related:
doubling of the shot noise found in NS structures®® corre-
sponds to narrowing of the -V curves observed in Ref. 10,
i.e., e"=q.;=2e¢. The key reason behind this correspondence
is the relation between shot noise and interaction correction
to conductance in NS systems established above. The abso-
lute value of this interaction correction is proportional to
(effective charge) X (shot-noise power), i.e., doubling of the
shot noise in diffusive NS structures implies four times big-
ger interaction correction to conductance than in the normal
case, see Fig. 2. The above predictions can be verified by
independently measuring shot-noise and Coulomb-blockade
effects in the same NS structure, e.g., as it was already done
in normal conductors.?

CONCLUSIONS

In summary, we theoretically described the interplay be-
tween Coulomb blockade and Andreev reflection and dem-
onstrated a direct relation between shot-noise and interaction
effects in NS systems. The fundamental physical reason be-
hind this relation lies in discrete nature of the charge
carriers—electrons and Cooper pairs—passing through NS
interfaces. Further extension of our theory will include the
impact of interactions on FCS.
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